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Summary

The premise of Piranha Plants as Charade is to transform a melody into a full-fledged song in the style of “Piranha Plants
on Parade” from the video game “Super Mario Bros. Wonder”. Given an input melody in the form of a digital signal, we
developed a music generation algorithm that transforms the input with the following process: 1) it extracts the melodic
information from the input; 2) it generates a chord progression that fits under both the extracted melody and the appropriate
stylistic conventions; 3) it generates a musical arrangement based on the melody and chord progression; and 4) it exports
the generated arrangement as a WAV file. For clean inputs within the targeted scope, our algorithm can often produce
convincing results, but for a majority of the cases, the output is subpar. Step 1 (melody extraction) is most likely the largest
source of failure; the pitch detection is generally correct, however, the onset detection often produces false positives. Despite
the current shortcomings, we believe that the core ideas behind “Piranha Plants as Charade” can be extended to adequately
meet our premise. We plan on fine-tuning our algorithm and further iterating on our program to produce better and more

consistent results.

1 Introduction

1.1 Motivation

The fields of mathematics and music are heavily in-
tertwined. In the late 16th century, many Western Eu-
ropean music theorists believed that they had devel-
oped ars perfecta: a set of rules for which, if followed,
guaranteed that music be “free of reprehensible ele-
ments, purged of every error and polished, and [the]
harmonies will be good and pleasant” [1]. Although
the concept of perfect music is a footnote in the mod-
ern musical landscape, we are intrigued by their
aspirations to model musical correctness with rule-
based approaches. We wanted to similarly explore
the relationship between music and mathematics by
generating music using rule-based algorithms that
humans follow — processes that mirror the human
composer. Our goal was to create a proof-of-concept
computer program that transforms a melody into a
full-fledged song in the style of “Piranha Plants on
Parade”! from the video game Super Mario Bros. Won-
der. We call this project Piranha Plants as Charade as
a reference to how we imitate the original song.

Why “Piranha Plants on Parade”? We believe that
this is the ideal song to emulate for our proof-of-
concept. It is based on a relatively simple harmonic
framework, which allows us to focus on develop-
ing the algorithm’s high-level concepts rather than
on hard-coding harmonic rules; yet the transitions
between harmonic states are distinct enough to be
recognizable. Similarly, the song’s accompaniment

1 https://wuw.youtube . com/watch?v=3EkzTUPoWMU

style is repetitive enough that it can be approximated
with only a few rules. “Piranha Plants on Parade”
also distinctively features gibberish lyrics, which al-
lows us to explore voice generation without worrying
about conforming to an existing language. Lastly, the
song originates from a video game, a medium with
a long history of using synthetic audio and music,
thus we believe it to be a thematically appropriate
subject for computer-generated music.

1.2 Minimum Viable Product (MVP)

We worked on Piranha Plants as Charade for six
weeks, borrowing ideas from several areas of com-
puter science and music, including but not limited
to: digital signal processing (DSP), hidden Markov
models (HMM), Western music theory, and jazz per-
formance. Due to time and budget limitations and
our lack of expertise across our explored domains, we
believed it to be unreasonable for us to perfectly em-
ulate the style of “Piranha Plants on Parade”. Thus,
our goal was to create an MVP, which we defined as
follows:

1. The MVP should support melody inputs with
the following properties:

(a) Has a time signature of 4/4.

(b) Is in the key of C major.

(c) Has a tempo of 110 beats per minute.
(d) Starts on a note (i.e. not a rest).

2. For any supported input, the MVP should out-
put a song with the following parts:

(a) The input melody and a harmony line, both
sung in a ‘Piranha Plant” style.
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Figure 1: An overview of the architecture of Piranha Plants as Charade.

(b) A stride piano part that outlines an appro-
priate chordal accompaniment.

We consider Piranha Plants as Charade to have ad-
equately met our MVP goals. We also implemented
additional features, including exported percussion
parts and live deployment in the form of an applica-
tion programming interface (API).

2 System Overview

Given an input melody in the form of a digital sig-
nal, we developed a music generation algorithm that
transforms the input with these steps: 1) extract the
melodic information from the input; 2) generate a
chord progression that fits under both the extracted
melody and the appropriate stylistic conventions; 3)
generate a musical arrangement based on the melody
and chord progression; and 4) export the generated
arrangement as a WAV file (see Figure 1).

2.1 Melody Extraction

The first step in Piranha Plants as Charade is to ex-
tract the melody from the input audio. The goal
of this section is to accept an input audio file and
output a sequence of notes, each with a MIDI pitch,
start time, and duration. This problem can be bro-
ken down into two subproblems: pitch detection and
note segmentation.

As a pre-processing step, we first apply the
Harmonic-Percussive Source Separation (HPSS) algo-
rithm [2, 3] to separate the harmonic and percussive
components of the audio signal. We perform pitch
detection on the harmonic component and use the
percussive component to identify the timestamps
where notes start, which we refer to as note onsets.
Finally, we combine both components to produce a
sequence of notes to define the melody.

Pitch Detection This problem determines the fun-
damental frequency of a sound. We aim to produce a
sequence of MIDI pitches that correspond to notes in
the melody. We explored a few different approaches,
starting with cepstrum analysis and autocorrelation.
However, these methods failed to handle the com-
plexity of imperfect audio. We elaborate more upon
this in Section 4.2. We decided to use the PYIN al-
gorithm [4] as implemented in the librosa? library, a
state-of-the-art pitch detection algorithm that builds
upon autocorrelation to detect pitches more robustly.

The PYIN algorithm is a state-of-the-art pitch detec-
tion algorithm that applies autocorrelation to detect
pitch candidates and refines the result using a prob-
abilistic thresholding model to filter out spurious
frequencies. It is robust on imperfect audio, and
has a readily available implementation in the librosa
library. After applying PYIN to the harmonic com-
ponent of the audio signal, we have the estimated

2 nttps://librosa.org/doc/0.11.0/generated/librosa.
pyin.html
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pitch in hertz across time. We then apply multiple
pitch shifts by a few cents® to find the best match,
determined by the lowest error after rounding to the
nearest MIDI pitch.

Note Segmentation Once we have the pitch se-
quence, it must be segmented into individual notes.
To do this, we count quantized time units from the
start of the first identified pitch at the assumed tempo
of the song. Within each interval, we take the mode
of the pitches as the pitch at that time. We end the
previous note and begin a new one if either of the
following conditions are met:

1. The pitch changes from the previous time step.
2. An onset is detected in the percussive compo-
nent of the audio at the corresponding time.

Thus, we obtain a sequence of notes defining the
melody to pass to the next component.

2.2 Chord Generation

The next step in Piranha Plants as Charade is to gen-
erate the ‘best’ chord progression* for the extracted
melody from Section 2.1. It is generally quite open-
ended and subjective whether a chord progression
sounds good with a melody, and there can be many
different appropriate chord progressions that evoke
different emotions and styles. For this project, we
define “appropriate’ to mean in adherence with the
style of “Piranha Plants on Parade”. We use a first-
order hidden Markov model (HMM) framework to
determine the most appropriate chord progression.

The hidden Markov model [5, 6], depicted in Fig-
ure 2, is a statistical model that describes a sequence
of hidden states, each of which emits an observa-
tion. In the context of chord generation, we model
the chord progression as a sequence of hidden states
and the consecutive notes from the melody as obser-
vations. The HMM framework allows us to model
the probability of a chord sequence given a melody,
which we can then use to generate the most likely or
most favourable sequence of chords.

The model consists of the following components
for time step t > 0:

¢ States s;: The hidden states of the model, which
represent the sequence of chords.

e Observations o0;: The observations of the model,
which represent the melody.

e Initial State Probabilities (Priors) P(sg): The
probabilities of starting in a particular state.

e Transition Probabilities P(s;1|s;): The proba-
bilities of transitioning between states.

3 A logarithmic unit representing a hundredth of a semitone.
4 A sequence of chords.
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Figure 2: Hidden Markov model for chord generation.

e Observation Probabilities P(o;|s;): The proba-
bilities of emitting an observation given a state.

In the most basic case, states and observations can
be mapped to integer indices such that the transition
and observation probabilities can be represented as
matrices. The model can then be solved using the
Viterbi [5] algorithm, which is a dynamic program-
ming algorithm that finds the most likely sequence
of hidden states given the observations.

For this project, we implemented the transition
and observation probabilities as scores (i.e. unnor-
malized, relative probabilities). The transition scores
represent the favourability of transitioning between
two chords, while the observation scores represent
the favourability of a melody excerpt given its asso-
ciated chord. The transition scores encapsulate our
analysis of the style of “Piranha Plants on Parade”
because said analysis is based on the frequencies of
chords and how they flow into one another.

Transition Scores Our transitions are based on an
analysis of “Piranha Plants on Parade” from a West-
ern music theory perspective. We identified the fol-
lowing patterns:

1. The I, IV, and V chords® and their respective
secondary dominant chords® almost exclusively
used.

2. A secondary dominant chord must be followed
by their respective I, IV, or V chord.

3. Secondary dominant chords occur frequently.

In our transition scores, we restricted the valid states
to follow the first two patterns, and we applied a
1.5x score multiplier for transitioning away from a
secondary dominant chord to model the last pattern.

Observation Scores The observation scores are
based on the melody. We calculate the score of a
melody given a chord by summing the number of

5 Three distinct types of chords. Their composition are irrelevant
for this paper.

6 A type of chord that is dependent on another chord. Its compo-
sition is irrelevant for this paper.
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notes in the melody that are in the chord. This is
a simple heuristic that favours chords that contain
more notes from the melody, which is generally a
good rule of thumb for harmonization. Although
this doesn’t fully account for deviations such as pass-
ing tones, it provides a good starting point for the
model.

2.3 Arrangement Generation

Like many human composers, our arrangement gen-
eration process follows a rule-based approach. With
the melody and chord progression from Sections
2.1 and 2.2 as context, it generates different parts
for each instrument using algorithms conceptualized
from a music theory point of view. This is similar
to how a jazz musician, who is familiar with the
conventions of the genre, can use lead sheets’ as
context to determine what to play in an ensemble.
Unlike in this analogy, the different parts cannot
‘hear” each other during the generation process, as
they are independent of each other. The main ad-
vantage of the independent generation approach is
its simplicity; however, it does not allow individual
parts to influence each other (with the exception of
the melody, which can influence all parts); this can
result in robotic-sounding parts. For this project,
we implemented pipelines that fall under three cate-
gories: 1) voice generation; 2) piano generation; and
3) percussion generation.

Voice Generation Generating the melody is trivial:
we use the extracted melody from Section 2.1. To gen-
erate the vocal harmony line, we use the following
algorithm:

Let S be the set of all MIDI pitches in the
C major scale. Let M = my, ..., my and
H=hy, ..., hy be two sequences of MIDI
pitches, where m; and h; correspond to the
ith note in the melody and vocal harmony
line, respectively. Compute H as follows:

hl‘ _ {mi -3

m; — 4

This harmonizes the melody in thirds, which is the
same technique applied to most of the vocal harmony
in “Piranha Plants on Parade”. This algorithm works
well for most inputs; however, there is an edge case
when the current chord conflicts with the scale. Be-

cause the vocal harmony line is quiet, the occasional
‘error’ does not overly stand out.

ifm;—3€S
ifm;—4eS

7 A minimalist type of music notation that contains the melody
and chord changes in a song.

Piano Generation This is the most complex part of
the arrangement generation process. We want to em-
ulate the style of stride piano, which involves alternat-
ing between the bassline and the chords. This clear
separation of parts allows us to handle the bassline
and chords in two separate processes.

Our bassline generation algorithm is straightfor-
ward. We alternate between the root pitch of the
chord and a perfect fourth below said root pitch (the
fifth of the chord), restarting whenever the chord
changes.

The chord voicing algorithm is more complex.
There are two types of chords we need to support:
major (Type 1) chords and secondary dominant 7
(Type 2) chords. It is guaranteed that a Type 1 chord
will always follow a Type 2 chord. First, we choose
some arbitrary anchor MIDI pitch T and voice all
Type 1 chords with the following algorithm:

Let C = {c1, cp, c3} be the set of MIDI
pitches of the chord we want to voice. Let
V = {v1, v, v3} be the set of MIDI pitches
in our computed voicing. Compute V as
follows:

v; =¢; + 12 [ argmin |c; + 12j — T|
jez

This step clumps each note in the chord around T,
which smoothens chord transitions.

Next, we voice all Type 2 chords with the follow-
ing algorithm that is based on voice-leading rules in
Western music theory:

Let M = {my,my, m3} be the voicing of the
Type 1 chord following the chord we want
to voice. By the definition of a major chord,
we can uniquely assign the elements of M
such that:

my —mp =4 mod 12
mz—mp =7 mod 12

Let V = {m; —1,my +1,m3} be the MIDI
pitches in our computed voicing.

Percussion Generation The percussion generation
algorithm is very simple: the generated snare drum
part outlines a gallop rhythm®, whereas the bass
drum plays on the first beat of every measure. “Pi-
ranha Plants on Parade” mostly follows this pattern,
thus we include it as a stretch feature in our proof-
of-concept.

8 A repeating pattern that consists of an eighth note followed by
two sixteenth notes.



2.4 Audio Export

The final phase of Piranha Plants as Charade is to
export the generated song from Part 2.3 as a WAV
file, a standard audio format. This step is comprised
of two independent parts: 1) a pipeline that uses
custom samples to handle the vocal parts; and 2) a
pipeline that leverages the MIDI standard to handle
all other instruments. The two results are combined
to generate the overall output.

MIDI-Based Pipeline By building around the MIDI
standard, the bulk of this step is handled by exter-
nal programs. First, the appropriate song data is
written to a MIDI file using MIDIUtil?, a Python li-
brary. Next, the generated file is converted into a
WAV file using FluidSynth'?, an open-source audio
synthesizer, and the “MS Basic” soundfont!! by Mus-
eScore. We originally implemented this approach as
a prototype, but since it worked well out of the box,
we decided to keep this process.

Pipeline for Vocals Although the MIDI-based ap-
proach was sufficient for exporting our song as a
WAV file, we wanted more customizability than the
process allowed for handling vocals. As such, we
designed a specialized pipeline to export the vocal
parts. We repurposed some voice samples from the
video game Animal Crossing: New Horizons as the
base samples for each voiced syllable; to export a
note for a given syllable, we pitch-shifted the respec-
tive base sample accordingly. We post-processed each
exported note to better fit in the overall audio mix.
We first applied a low-pass Butterworth filter to re-
duce dissonance in the high registers, followed by
a volume envelope based on a modified Hamming
window to smoothen the start and end of each note.
We pitch-shifted the base samples by hand us-
ing Melodyne!?, a commercial software designed
for pitch manipulation, and we stored the outputs
to be accessed on demand. Although this approach
provided us with the highest-quality audio samples,
it required a lot of manual work and imposed a cap
on the supported pitch range. Nonetheless, audio
quality was our top priority in this iteration, so we
decided to proceed with the Melodyne approach.

3 Results

Our implementation of Piranha Plants as Charade
can successfully take an audio file of the melody as
input and generate an audio file of the song in the
style of “Piranha Plants on Parade”. The generated

? https://pypi.org/project/MIDIUtil/
Ohttps://www.fluidsynth.org/

1A file format that contains instrument sample data.
2https: //www.celemony . com/en/melodyne
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Table 1: The melody extraction results over various timbres.

Timbre Mistake Count
Instrument Noise Level Pitch Rhythm
Piano None 1 1
Piano Low 1 0
Piano Medium 1 7
Piano High 2 9
Flute None 0 9
Saxophone None 0 4
Trumpet None 0 9
Violin None Near unrecognizable

output contains the melody and a harmony line sung
by synthesized vocals, as well as accompanying pi-
ano and percussion parts. A collection of sample
inputs and outputs is available in our public results
repository (See Appendix A.1).

To evaluate the performance of our system, we
conducted a qualitative analysis of the generated
audio files. We compared the generated output to
the original song, “Piranha Plants on Parade”, and
assessed the following aspects: 1) melody accuracy;
and 2) chord progression accuracy.

3.1 Melody Extraction Results

To evaluate the efficacy of the melody extraction pro-
cess, we analyzed the melody extraction outputs for
an excerpt from “Piranha Plants on Parade”!® with
the following timbres from MuseScore’s “MS Basic”
soundfont: flute, piano, tenor saxophone, trumpet,
and violin. The pitch and rhythm mistake counts
are recorded in Table 1. Additionally, we tested the
piano soundfont with different noise levels: no noise,
low white noise (0.3% amplitude), medium white
noise (0.7% amplitude), and high white noise (1%
amplitude).

Qualitatively, the outputs from the tenor saxo-
phone, low-noise piano, and no-noise piano were
good. There were errors, but they were few and
minor. The outputs for the flute, trumpet, and re-
maining piano inputs were acceptable; there were
clear mistakes, but the melody remains recognizable.
The violin output was very poor and bore little re-
semblance to the input.

Based on the piano data, there is a trend of input
noise leading to less accurate outputs. However, the
correlation is not perfect; for example, the melody
extraction process was more accurate for the piano
input with low noise than for the piano input with
no noise. Based on the overall data, it is clear that

BThe first eighth rest was converted into a note to meet our MVP
contraints.
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Figure 3: A comparison between the original “Piranha Plants
on Parade” chord progression and that from our chord generation
process over the same excerpt.

the output pitches are generally more accurate than
the output rhythms. This implies that the PYIN step
of the process is more reliable than the onset detec-
tion step because most rhythmic mistakes can be
attributed to onset detection errors; extra articula-
tions correspond to false positive onsets and missing
articulations correspond to false negative onsets —
PYIN errors can only correspond to extra rests (which
were uncommon).

3.2 Chord Progression Results

As the first step for evaluating the chord progression
generation efficacy, we ran Piranha Plants as Cha-
rade with a hard-coded excerpt from the melody of
“Piranha Plants on Parade” and we compared the
output chord progression to the respective original
chord progression.

Overall, the results are very good. The original
and generated chords matched perfectly for 9/16
of the excerpt, and a similar chord was chosen for
another 2/16 of the excerpt. The chord generation
algorithm chooses a different chord only 5/16 of
the time; in these cases, the chords chosen by our
algorithm seem reasonable. Given that the chord
progression generation depends on itself, deviations
propagate, thus the output is more accurate than the
raw numbers suggest.

Given more time, we planned on running a survey
to evaluate the chord progression generation on other
melodies. We would have also attempted to find pat-
terns in what melodic traits cause and/or correlate
with better or worse chord progression generation.

4 Discussion

4.1 Early Experiments

Cepstrum Analysis Our first attempt at pitch de-
tection involved cepstrum analysis. Our input data

consists of a sequence of tones, each of which con-
sists of a fundamental frequency fy and harmonics
fx = kfp for all k > 1. Thus, we expect the presence
of spikes at the multiples of fj in the Fourier domain.
The idea of cepstrum is to identify this periodic pat-
tern by applying the Fourier transform a second time.
Formally, the cepstrum C is defined on a signal y as
follows:
C = FFT (log |FFT (y)|)

The fundamental frequency of the signal is at the first
non-zero peak in the cepstrum:

fo = 1

0™ argmax; C[k]

However, this method is not robust to noise and
did not perform reliably in our experiments (See
Appendix A.1) using acoustic audio data.

Autocorrelation Another method we explored for
pitch detection was autocorrelation. The idea is to
find the periodicity of the signal by comparing it
to a delayed version of itself. One formulation of
the autocorrelation function, adapted from the Pear-
son correlation coefficient, is given by the following
formula:

Given a signal y and a window size N € IN¥,
let y; be a subsequence of y of length N
starting at index i with iy, as its mean.

The autocorrelation of a signal with its ver-
sion delayed by a shift of k is defined as:

,(k):w

Var (y,)
_ Yniker (U — y,) (Ynok = Hy, )
Zl’l (yn - V]/n)z

Given the sampling rate f;, the non-zero shift with
the highest correlation between signals corresponds
to the signal’s fundamental frequency:

fo= f
argmin, {r (k) : k € N*}

While this method yielded better results, it was
nonetheless limited in handling real audio record-
ings. The results were very sensitive to hyperparam-
eter choices such as the window size and correlation
thresholds. Nevertheless, this served as an interest-
ing exploration into a method that is the foundation
for PYIN, the algorithm we decided to use.

Finite State Machine Chord Generation Our first
approach to chord generation was to use a finite
state machine (FSM) to model the transitions between
chords. The FSM is defined by a set of states, repre-
senting chords, and a set of transitions, representing



the possible transitions between chords. This ap-
proach would require us to define transitions individ-
ually for each chord, which is a tedious process. Thus,
we decided to proceed with a hidden Markov model
approach, which allows us to define transitions more
easily within two structures: the observation matrix
and the transition matrix.

The FSM approach lends itself to the possibility
of integrating large language model (LLM) agents,
which use FSM-like models to define the decision-
making process. However, given our limited testing,
LLMs are not able to produce meaningful results
when asked to predict the next chord in a sequence
given the melody.

Voice Sample Library To generate the vocal parts of
our song, we used a custom library of voice samples
from the video game Animal Crossing: New Horizons.
To prepare the library, we needed to pitch-shift the
available samples to each note in the scale. Our origi-
nal attempt used stock DSP algorithms from librosa
and other audio processing libraries, but the vocal
qualities would become distorted beyond recogni-
tion for large shifts. Next, we experimented with
formant!'4-preservation techniques, but the results
were unsatisfactory due to robotic-sounding arti-
facts. In the end, we turned to the closed-source
software Melodyne to carry on with our MVP. Al-
though we were not able to implement a satisfactory
pitch-shifting algorithm, such techniques evidently
exist.

4.2 Avenues for Future Work

Relax MVP Assumptions The current implemen-
tation of Piranha Plants as Charade is a proof-of-
concept that demonstrates the feasibility of our ap-
proach. However, it is limited by the assumptions
we made to simplify the problem. Thus, we would
like to relax these assumptions to expand the range
of melodies that can be processed.

For example, we assume that the input melody
is played at 110 BPM, which is the tempo of the
original song. Moving forward, we would like to step
away from this assumption and allow for arbitrary
tempos. This would require us to implement a more
sophisticated melody extraction algorithm that can
handle varying tempos. There are existing methods
to identify the beat and infer the tempo, such as
BeatNet [7].

We also assume that the key is C major to simplify
the chord generation process. Although any melody
can be transposed!® to match this key, as we have

4The audio characteristics of spoken sounds.
15To change the key of a piece of music by shifting all the notes up
or down by a constant interval, maintaining the original contour
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done for some sample inputs in this paper, we would
ideally like to support any melody in its original key.
There are various methods to solve the key-finding
problem, such as the Krumhansl-Schmuckler key-
finding algorithm [8], an extension of Krumhansl-
Schmuckler using intervals [9], and more modern
approaches using supervised learning [10].

Improving Melody Extraction Given a simple syn-
thetic melody within our MVP scope, our current im-
plementation of melody extraction works sufficiently
well; however, it is not robust enough for recorded
audio data. In particular, it does not handle noise
well and often has trouble accurately identifying ar-
ticulations in the melody. Since our onset detection
implementation seems to be the source of the most
errors, a key point for future work is to refine this
step of the pipeline.

Expanding to Additional Styles In the current im-
plementation, the chord progression we generate is
determined by the observation and transition models
that we define by hand. These capture the cohesive-
ness of a melody and a chord, and preferences for
how to transition between chords respectively. For
this MVP, we have only implemented the style of
“Piranha Plants on Parade” by specifying a particular
instance of the transition and observation models.
However, we can easily expand this to other styles
by defining new transition and observation models
according to different harmonic patterns.

Unfortunately, defining the transition and observa-
tion models by hand is a tedious process that requires
a deep understanding of music theory. A more scal-
able method would be to use a data-driven approach
to learn the transition and observation models from
a corpus of music. This would allow us to tailor
the models to a specific style of music programmati-
cally. It is worth noting that a bottleneck for this ap-
proach is the availability of data, as it would require
a melody and the corresponding chord progression
aligned with it.

Extensions of the Hidden Markov Model One key
assumption for the first-order hidden Markov model
is the Markov assumption: that the next state de-
pends only on the current state, and not the past [6].
While this assumption simplified our approach and
provided a simple solution to solve it, this assump-
tion limits the model’s ability to capture long-term
dependencies, which could be an important element
in generating more complex chord progressions. For
example, one common cadence!® appearing in “Pi-
ranha Plants on Parade” and across many other gen-

and harmonic quality.
16A harmonic progression signalling the end of a phrase, often
creating a sense of resolution.
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res, is the ii-V-I cadence. To encourage this cadence,
we would need to define a transition model that
captures the transitions between three chords. How-
ever, this is not possible with the first-order HMM,
as its memory is limited to the most recent state.
Higher-order HMMs would be able to capture pat-
terns spanning multiple chords. Algorithms for solv-
ing higher-order HMMS have been developed, such
as the Baum-Welch algorithm [11], a method by Ye
and Wang that entails encoding previous states as
tuples [12], and an extended Viterbi algorithm for
second-order HMMs [13].

Real-Time Processing One interesting expansion
of Piranha Plants as Charade is to implement real-
time processing of audio input. This would allow
for a more interactive freestyle experience, where
users can sing or play along with a generated har-
mony. However, one fundamental flaw of our current
approach is that our chord generation algorithm as-
sumes we have access to the full melody to predict
the entire chord sequence at once. This is not the case
in real-time processing, where we only have access
to the melody up to the current time step. Thus, we
would need to pivot to a different approach to chord
generation that can predict the next chord based on
the current melody, and it must be fast enough to do
so in real time.

One approach building upon our current work is
to process each time step independently, applying
the transition and observation models once to deter-
mine the next chord. However, this greedy approach
would not be able to capture the long-term depen-
dencies of the melody.

We also had the opportunity to discuss our project
with Professor Kate Larson!”, who mentioned a re-
cent paper using reinforcement learning for real-time
interactive jamming [14]. Although this is outside
the scope of our project and knowledge to discuss in
detail, it would be an interesting avenue to explore
as we consider real-time processing.

5 Conclusion

To summarize, we have presented Piranha Plants as
Charade, a system that generates a fully harmonized
song from a single melody. Our approach is based on
the observation that melodies and harmonies are of-
ten closely related, and there are a limited number of
ways to change between chords within the “Piranha
Plants on Parade” style. We have demonstrated a
proof of concept through Piranha Plants on Charade,
solving a simplified version of the problem using
hidden Markov models, digital signal processing,

https://cs.uwaterloo.ca/“klarson/

and more. We have also discussed several avenues
for future work, including relaxing the assumptions
made in our proof-of-concept implementation, im-
proving melody extraction, and expanding to addi-
tional styles. Overall, we believe that our system is
an interesting exploration of music generation, es-
pecially with the application of a hidden Markov
model, and we look forward to continuing to explore
its potential.
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Appendix A: Supplementary Materials

A.1 Project Repository
Project https://github.com/piranha-plants-as-charade.

Engine (Main Pipeline) https:
//github.com/piranha-plants-as-charade/engine/tree/031c9e3091e4f85bd18£fd7f51e3f31b7af37c400.

Sample Inputs and Outputs + Melody Extraction Tests https://github.com/
piranha-plants-as-charade/results/tree/066bdf375646d9c8fb28b318f0c3aa2c54683533.

Cepstrum Analysis Notebook https://github.com/piranha-plants-as-charade/engine/blob/
031c9e3091e4£85bd18£fd7£51e3f31b7af37c400/playground/cepstrum_pitch_detection.ipynb.

Autocorrelation Analysis Notebook https://github.com/piranha-plants-as-charade/engine/blob/
031c9e3091e4£85bd18fd7£f51e3f31b7af37c400/playground/autocorrelation_pitch_detection.ipynb.
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A.2 Transcription of the Melody Extraction Outputs for the Same Melody With Various
Timbres

Input

Flute

Tenor Sax

Trumpet

Violin

Piano (no noise)

Piano (low noise)

Piano (medium noise)

Piano (high noise)

e

In.

FlL

Sax.

Tpt.

Vin.

Pno. (none)

Pno. (low)

Pno. (medium)

Pno. (high)

2 )
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A.3 Transcription of the Original and Generated Chord Progression for an Excerpt From
“Piranha Plants on Parade”

0 I T . S — —— ‘
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R — | i i j . |
C C G7 G7
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Original Chords ?5. % A A A / / / 7 i
D))
C C G G
N
Generated Chords -@—!ﬁﬂi yia yia yia yia yia ya g ya
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Mel e/ | | } - i | I 1 } | | | Y ] I e/ }I | - }
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